Abstract
The cation-independent mannose-6-phosphate receptor (CI-M6PR, aka insulin-like growth factor II receptor or IGFIIR) is a membrane protein that plays a central role in the trafficking of lysosomal acid hydrolases into lysosomes via mannose-6-phosphate (M6P) binding domains. In order to maintain cellular metabolic/catabolic homeostasis, newly synthesized lysosomal acid hydrolases are required to bind to M6PR for transit. Acid hydrolases secreted by cells can also be internalized via M6PR residing on the cell membrane and are transported to the lysosomes, a feature that enables enzyme replacement therapy for the treatment of several lysosomal storage disorders. Therefore, a thorough characterization of this receptor is critical to the development of lysosomal enzyme-based therapeutics that utilize M6PR for drug delivery to the lysosome. However, the extracellular domain (ECD) of M6PR is highly complex, containing 15-mannose receptor homology (MRH) domains. In addition, homodimerization of the receptor can occur at the membrane, making its characterization challenging. In this study, a novel human M6PR (hM6PR)-overexpressing cell line originally established for hM6PR cellular uptake assay was utilized for production of hM6PR-ECD, and a novel small molecule biomimetic (aminophenyl-M6P) affinity resin was developed for the purification of M6PR-ECD. The affinity-purified hM6PR-ECD was monomeric, contained 14 intact MRH domains (1–14) and a partial MRH domain 15, and was successfully employed in ELISA-based and surface plasmon resonance-based binding assays to demonstrate its ligand-binding functionality, making it suitable for the evaluation of biotherapeutics that utilize M6PR for cellular internalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.