Abstract

Acute myeloid leukemia (AML) is a heterogeneous group of diseases. Normal cytogenetics (CN) constitutes the single largest group, while trisomy 8 (+8) as a sole abnormality is the most frequent trisomy. How trisomy contributes to tumorigenesis is unknown. We used oligonucleotide-based DNA microarrays to study global gene expression in AML+8 patients with +8 as the sole chromosomal abnormality and AML-CN patients. CD34(+) cells purified from normal bone marrow (BM) were also analyzed as a representative heterogeneous population of stem and progenitor cells. Expression patterns of AML patients were clearly distinct from those of CD34(+) cells of normal individuals. We show that AML+8 blasts overexpress genes on chromosome 8, estimated at 32% on average, suggesting gene-dosage effects underlying AML+8. Systematic analysis by cellular function indicated up-regulation of genes involved in cell adhesion in both groups of AML compared with CD34(+) blasts from normal individuals. Perhaps most interestingly, apoptosis-regulating genes were significantly down-regulated in AML+8 compared with AML-CN. We conclude that the clinical and cytogenetic heterogeneity of AML is due to fundamental biological differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.