Abstract

Background Eucalyptus species and their hybrids encompass approximately 40% of forestry plantation area in South Africa and contribute significantly to the paper pulp industry due to their favourable wood fibre properties. Eucalypt plantation trees are affected by numerous pathogens during their lifetime, some of which can cause severe losses such as Phytophtora spp and Chrysoporthe spp. Plant defence mechanisms against pathogens is currently better understood in the model plant Arabidopsis thaliana where it has been shown that the salicylic acid (SA) and jasmonic acid (JA) signalling pathways enhance resistance against biotrophic and necrotrophic pathogens, respectively [1] . This process involves the up-regulation of specific defence genes which are considered to be marker (diagnostic) genes for the two signalling pathways [2,3].

Highlights

  • Eucalyptus species and their hybrids encompass approximately 40% of forestry plantation area in South Africa and contribute significantly to the paper pulp industry due to their favourable wood fibre properties

  • Plant defence mechanisms against pathogens is currently better understood in the model plant Arabidopsis thaliana where it has been shown that the salicylic acid (SA) and jasmonic acid (JA) signalling pathways enhance resistance against biotrophic and necrotrophic pathogens, respectively [1]

  • The specificity of the putative markers was determined by profiling the putative marker genes with material induced by the opposing pathway, i.e SA markers were assessed with MeJA induced material

Read more

Summary

Introduction

Eucalyptus species and their hybrids encompass approximately 40% of forestry plantation area in South Africa and contribute significantly to the paper pulp industry due to their favourable wood fibre properties. Eucalypt plantation trees are affected by numerous pathogens during their lifetime, some of which can cause severe losses such as Phytophtora spp and Chrysoporthe spp. Plant defence mechanisms against pathogens is currently better understood in the model plant Arabidopsis thaliana where it has been shown that the salicylic acid (SA) and jasmonic acid (JA) signalling pathways enhance resistance against biotrophic and necrotrophic pathogens, respectively [1]. This process involves the up-regulation of specific defence genes which are considered to be marker (diagnostic) genes for the two signalling pathways [2,3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.