Abstract

BackgroundDrought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.). Therefore, in order to get information of regulatory processes involved in the adaptation to drought stress and leaf senescence expression analyses of candidate genes were conducted on a set of 156 barley genotypes in early developmental stages, and expression quantitative trait loci (eQTL) were identified by a genome wide association study.ResultsSignificant effects of genotype and treatment were detected for leaf colour measured at BBCH 25 as an indicator of leaf senescence and for the expression level of the genes analysed. Furthermore, significant correlations were detected within the group of genes involved in drought stress (r = 0.84) and those acting in leaf senescence (r = 0.64), as well as between leaf senescence genes and the leaf colour (r = 0.34). Based on these expression data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5 % derived from the Illumina 9 k iSelect SNP Chip, eight cis eQTL and seven trans eQTL were found. Out of these an eQTL located on chromosome 3H at 142.1 cM is of special interest harbouring two drought stress genes (GAD3 and P5CS2) and one leaf senescence gene (Contig7437), as well as an eQTL on chromosome 5H at 44.5 cM in which two genes (TRIUR3 and AVP1) were identified to be associated to drought stress tolerance in a previous study.ConclusionWith respect to the expression of genes involved in drought stress and early leaf senescence, genotypic differences exist in barley. Major eQTL for the expression of these genes are located on barley chromosome 3H and 5H. Respective markers may be used in future barley breeding programmes for improving tolerance to drought stress and leaf senescence.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0701-4) contains supplementary material, which is available to authorized users.

Highlights

  • Drought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.)

  • Leaf senescence Leaf colour (SPAD, soil plant analysis development) measured at 20 days after drought stress induction (BBCH 25, according to Stauss [51]) being indicative for leaf senescence revealed significant differences between treatments and genotypes but no significant interaction of genotype and treatment was observed at this stage (Fig. 1 and Table 2) giving hint to physiological changes and changes in gene expression

  • In most genotypes all five drought stress related genes (A1, Dhn1, GAD3, NADP-dependent malic enzyme-like (NADP_ME) and P5CS2) showed a higher expression under stress treatment relative to the control whereas for genes involved in leaf senescence

Read more

Summary

Introduction

Drought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.). In order to get information of regulatory processes involved in the adaptation to drought stress and leaf senescence expression analyses of candidate genes were conducted on a set of 156 barley genotypes in early developmental stages, and expression quantitative trait loci (eQTL) were identified by a genome wide association study. For several years high-throughput instruments e.g. the BioMark System from Fluidigm have enabled large scale quantitative PCR studies [2] Because of this and the possibility to analyse a large number of genotypes on expression chips [2] a range of genome wide association. Disturbing the regulatory processes in drought stress response results in irreversible changes of cellular homeostasis and the destruction of functional and structural proteins and membranes, leading to cell death [19] and decreased yield formation [28]. A huge transcriptome analysis for drought stress associated genes was done for example in barley [29] and wheat [30] showing differential response of genes involved in drought stress tolerance

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.