Abstract

BackgroundDifferentiation of human induced pluripotent stem cells (hiPSCs) into retinal lineages offers great potential for medical application. Therefore, it is of crucial importance to know the key intrinsic regulators of differentiation and the specific biomarker signatures of cell lineages.MethodsIn this study, we used microarrays to analyze transcriptomes of terminally differentiated retinal ganglion cell (RGC) and retinal pigment epithelium (RPE) lineages, as well as intermediate retinal progenitor cells of optic vesicles (OVs) derived from hiPSCs. In our analysis, we specifically focused on the classes of transcripts that encode intrinsic regulators of gene expression: the transcription factors (TFs) and epigenetic chromatin state regulators. We applied two criteria for the selection of potentially important regulators and markers: firstly, the magnitude of fold-change of upregulation; secondly, the contrasted pattern of differential expression between OV, RGC and RPE lineages.ResultsWe found that among the most highly overexpressed TF-encoding genes in the OV/RGC lineage were three members of the Collier/Olfactory-1/Early B-cell family: EBF1, EBF2 and EBF3. Knockdown of EBF1 led to significant impairment of differentiation of hiPSCs into RGCs. EBF1 was shown to act upstream of ISL1 and BRN3A, the well-characterized regulators of RGC lineage specification. TF-encoding genes DLX1, DLX2 and INSM1 were the most highly overexpressed genes in the OVs, indicating their important role in the early stages of retinal differentiation. Along with MITF, the two paralogs, BHLHE41 and BHLHE40, were the most robust TF markers of RPE cells. The markedly contrasted expression of ACTL6B, encoding the component of chromatin remodeling complex SWI/SNF, discriminated hiPSC-derived OV/RGC and RPE lineages.ConclusionsWe identified novel, potentially important intrinsic regulators of RGC and RPE cell lineage specification in the process of differentiation from hiPSCs. We demonstrated the crucial role played by EBF1 in differentiation of RGCs. We identified intrinsic regulator biomarker signatures of these two retinal cell types that can be applied with high confidence to confirm the cell lineage identities.

Highlights

  • Differentiation of human induced pluripotent stem cells into retinal lineages offers great potential for medical application

  • A number of pathological conditions is associated with the degeneration of different retinal cell types, the most prevalent of them are age-related macular degeneration (AMD), which results from the death of retinal pigment epithelium (RPE), and glaucoma, associated with the death of retinal ganglion cell (RGC)

  • RGCs were differentiated from optic vesicles (OVs) in the course of 15 days, during which they developed their characteristic morphology of long neurite outgrowth (Fig. 1b)

Read more

Summary

Introduction

Differentiation of human induced pluripotent stem cells (hiPSCs) into retinal lineages offers great potential for medical application. The pluripotent stem cells, such as human embryonic stem cells (hESCs), offer a great potential for application in medicine as they can be directed to differentiate into virtually any cell type of an organism. This makes them an excellent tool for producing relevant cell lineages for tissue repair by transplantation, as well as for in vitro disease modeling and drug testing. The advent of technology for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) by forced overexpression of stemness-associated transcription factors (TFs) further expanded the opportunities for medical application of stem cells [1, 2]. Using patient-derived hiPSCs allows personalized therapeutic approaches, including the reduction of risks of immune rejection by autologous transplantation of hiPSC-derived cells, as well as feasibility of gene repair for correction of inherited genetic diseases

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call