Abstract

The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. Changes in gene expression were measured by DNA microarrays at three time points (24 h, 4 days, and 1 week) during the course of differentiation from preadipocytes to mature adipocytes. Several functional categories of genes were affected by adipocyte conversion. In addition, seven genes were found to be commonly altered by 5-fold or more by adipocyte conversion at all three time points. Lipocalin 2, haptoglobin, serum amyloid A3, stearoyl-CoA desaturase, and 11β-hydroxysteroid dehydrogenase 1 were induced while actin α2 and procollagen VIII α1 were suppressed by adipocyte differentiation. Further study of the regulation of these genes and pathways will lead to an increased understanding of the biochemical pathways involved in adipocyte differentiation and possibly to the identification of new therapeutic targets for treatment of obesity and other metabolic diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.