Abstract
Retinal detachment (RD) is associated with acute visual loss caused by anatomic displacement of the photoreceptors and with chronic visual loss/disturbance caused by retinal remodeling and photoreceptor cell death, which may occur even after successful reattachment. The P2Y(2) receptor agonist INS37217 improves the rate of retinal reattachment in animal models of induced RD, and has been shown to also significantly enhance the rate of ERG recovery in a mouse model of RD. The identification of genes modulated by INS37217 may allow further drug discovery for treating RD and edema. To identify genes involved in RD and subsequent reattachment, a retinal microarray screen was performed using a mouse model of RD in the presence or absence of INS37217. Ninety-two genes were identified as differentially expressed across three time points, most of which were upregulated in the presence of this agonist. Furthermore, it was shown that RD alters the expression of aquaporin-0 (AQP-0), and this modulation is prevented by treatment with INS37217. The presence of AQP-0 in retinal bipolar cells was also demonstrated, whereas it was previously thought to be specific to the lens. Mice lacking functional alleles of AQP-0 had a phototransduction deficit as assessed by electroretinography; however, their photoreceptor structure was normal, indicative of a problem with signal transmission between neurons. This study establishes the genes involved in RD and reattachment, and also demonstrates for the first time a physiologically significant role for AQP-0 in retinal function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.