Abstract

ABSTRACTIt is currently unknown how the islet transcriptional pattern changes as glucose metabolism deteriorates and progresses to fulminant type 2 diabetes (T2D). In this study, we hypothesized that islets from donors with elevated HbA1c levels, but not yet diagnosed with T2D, would show signs of cell stress on a transcriptional level. Laser capture microdissection and qPCR arrays including 330 genes related to mitochondria, oxidative stress, or the unfolded protein response were used to extract and analyze islets from organ donors with HbA1c <5.5% (37 mmol/mol), elevated HbA1c (6.0–6.5% (42–48 mmol/mol)), high HbA1c (>6.5% (48 mmol/mol)) or established T2D. Principal component analysis and hierarchical clustering based on the expression of all 330 genes displayed no obvious separation of the four different donor groups, indicating that the inter-donor variations were larger than the differences between groups. However, 44 genes were differentially expressed (P < 0.05, false discovery rate <30%) between islets from donors with HbA1c <5.5% (37 mmol/mol) compared with islets from T2D subjects. Twelve genes were differentially expressed compared to control islets in both donors with established T2D and donors with elevated HbA1c (6.0–6.5% (42–48 mmol/mol)). Overexpressed genes were related mainly to the unfolded protein response, whereas underexpressed genes were related to mitochondria. Our data on transcriptional changes in human islets retrieved by LCM from high-quality biopsies, as pre-diabetes progresses to established T2D, increase our understanding on how islet stress contributes to the disease development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call