Abstract

Colorectal cancer (CRC) is one of the most common cancers worldwide. Natural Killer Group 2D Receptor (NKG2D) and their ligands (NKG2DLs) play crucial roles in natural killer (NK) cell-mediated cytotoxicity. Tumorigeneses cause increased NKG2DLs expression on tumor cell surfaces, thereby these cells individually eliminated by NK cells. However, CRC cells can reduce their NKG2DL expression to escape from NK-mediated immune surveillance which is associated with poor prognosis. Therefore, previous studies suggest that up-regulation of NKG2DLs can contribute to promising NK cell-mediated immunotherapy strategies. We aimed to analyze NKG2DLs expression profiles in response to chemotherapeutic drugs and increased MHC class I polypeptide-related sequence A (MICA) expression, which is related to favorable prognosis in CRC, using low doses of bortezomib and epirubicin combination without causing direct cytotoxicity. Results showed that MICA expression sligthlyincreased following drug treatment in the CRC cells but not for the normal cells. Also, we enriched our study with Gene Expression Omnibus (GEO) datasets including expression profiles of various NKG2DLs using in silico analyses. Accordingly, NKG2DL expression in CRC was screened in proportion to other cancers, histologic subtypes, TNM stages and metastatic samples to compare with our data. Overall, the analyzed data showed that NKG2DLs demonstrate different expression profiles in response to chemotherapeutic agents and a combination of low-dose bortezomib and epirubicin slightly increased MICA mRNA expression in CRC cell lines. However, performing further analysis of the combination therapy for MICA protein expression and studying its interaction with NK cells will make the results more meaningful.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call