Abstract

IntroductionmicroRNAs (miRNAs) have been identified to be closely related to inflammatory diseases. The aim of our study was to identify expression profiles of miRNAs associated with inflammation in apical periodontitis (AP) lesions and human periodontal ligament fibroblasts (HPDLFs) inflammation. MethodsTotal RNAs were extracted from 10 AP lesions, 6 control tissues, and HPDLFs using lysis buffer. Expressions of miRNAs (miR-29b, 106b, 125b, 143, 155, and 198) were detected by real-time polymerase chain reaction. The dual luciferase assay was used to test miR-155 directly targeted semaphorein3a (SEMA3A). Western Blot and the enzyme-linked immunosorbent assay were used to detect the protein expressions of SEMA3A and proinflammatory cytokines, respectively. All experiments were repeated at least 3 times. Data were analyzed using the independent sample t test. ResultsThe previously mentioned miRNAs were all significantly up-regulated in AP lesions (P < .05), whereas they were not in HPDLFs inflammation, in which miR-29b, 106b, 125b, and 198 were down-regulated (P < .05) and miR-143 and 155 were unchanged (P > .05). Overexpression of miR-155 induced proinflammatory phenotype, and down-regulation reduced the other miRNAs in HPDLFs (P < .05). Moreover, miR-155 directly targeted SEMA3A, which was significantly up-regulated (increased) in acute HPDLFs inflammation and down-regulated (decreased) in AP lesions (P < .05). Knockdown of SEMA3A led to induction of the proinflammatory phenotype; down-regulation of miR-29b, 106b, 125b, 143, and 198 (P < .05); and, more importantly, up-regulation of miR-155 (P < .01). ConclusionsOur study showed that the expression profiles of inflammation-associated miRNAs associated with inflammation in AP lesions and HPDLFs inflammation were different. miR-155 may play a crucial role in apical periodontitis progression by directly inhibiting SEMA3A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.