Abstract

The orchestrated events required during brain development, as well as the maintenance of adult neuronal plasticity, highly depend on the accurate responses of neuronal cells to various cellular stress or environmental stimuli. Recent studies have defined a previously unrecognized, broad class of multidomain proteins, designated as signal transduction ATPases with numerous domains (STAND), which comprises a large number of proteins, including the apoptotic peptidase activating factor 1 (Apaf1) and nucleotide-binding oligomerization domain-like receptors (NLRs), central players in cell death and innate immune responses, respectively. Although the involvement of STANDs in the central nervous system (CNS) has been postulated in terms of neuronal development and function, it remains largely unclear. Here, we identified Nwd1 (NACHT and WD repeat domain-containing protein 1), as a novel STAND protein, expressed in neural stem/progenitor cells (NSPCs). Structurally, Nwd1 was most analogous to the apoptosis regulator Apaf1, also involved in mitosis and axonal outgrowth regulation in the CNS. Using a specific antibody, we show that, during the embryonic and postnatal period, Nwd1 is expressed in nestin-positive NSPCs in vivo and in vitro, while postnatally it is found in terminally differentiated neurons and blood vessels. At the subcellular level, we demonstrate that Nwd1 is preferentially located in the cytosolic compartment of cultured NSPCs, partially overlapping with cytochrome c. These observations imply that Nwd1 might be involved in the neuronal lineage as a new STAND gene, including having a pro-apoptotic or nonapoptotic role, similar to Apaf1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.