Abstract

BackgroundLignin, after cellulose, is the second most abundant biopolymer accounting for approximately 15-35% of the dry weight of wood. As an important component during wood formation, lignin is indispensable for plant structure and defense. However, it is an undesirable component in the pulp and paper industry. Removal of lignin from cellulose is costly and environmentally hazardous process. Tremendous efforts have been devoted to understand the role of enzymes and genes in controlling the amount and composition of lignin to be deposited in the cell wall. However, studies on the impact of downregulation and overexpression of monolignol biosynthesis genes in model species on lignin content, plant fitness and viability have been inconsistent. Recently, non-coding RNAs have been discovered to play an important role in regulating the entire monolignol biosynthesis pathway. As small RNAs have critical functions in various biological process during wood formation, small RNA profiling is an important tool for the identification of complete set of differentially expressed small RNAs between low lignin and high lignin secondary xylem.ResultsIn line with this, we have generated two small RNAs libraries from samples with contrasting lignin content using Illumina GAII sequencer. About 10 million sequence reads were obtained in secondary xylem of Am48 with high lignin content (41%) and a corresponding 14 million sequence reads were obtained in secondary xylem of Am54 with low lignin content (21%). Our results suggested that A. mangium small RNAs are composed of a set of 12 highly conserved miRNAs families found in plant miRNAs database, 82 novel miRNAs and a large proportion of non-conserved small RNAs with low expression levels. The predicted target genes of those differentially expressed conserved and non-conserved miRNAs include transcription factors associated with regulation of the lignin biosynthetic pathway genes. Some of these small RNAs play an important role in epigenetic silencing. Differential expression of the small RNAs between secondary xylem tissues with contrasting lignin content suggests that a cascade of miRNAs play an interconnected role in regulating the lignin biosynthetic pathway in Acacia species.ConclusionsOur study critically demonstrated the roles of small RNAs during secondary wall formation. Comparison of the expression pattern of small RNAs between secondary xylem tissues with contrasting lignin content strongly indicated that small RNAs play a key regulatory role during lignin biosynthesis. Our analyses suggest an evolutionary mechanism for miRNA targets on the basis of the length of their 5’ and 3’ UTRs and their cellular roles. The results obtained can be used to better understand the roles of small RNAs during lignin biosynthesis and for the development of gene constructs for silencing of specific genes involved in monolignol biosynthesis with minimal effect on plant fitness and viability. For the first time, small RNAs were proven to play an important regulatory role during lignin biosynthesis in A. mangium.

Highlights

  • Lignin, after cellulose, is the second most abundant biopolymer accounting for approximately 1535% of the dry weight of wood

  • Our study critically demonstrated the roles of small RNAs during secondary wall formation

  • Comparison of the expression pattern of small RNAs between secondary xylem tissues with contrasting lignin content strongly indicated that small RNAs play a key regulatory role during lignin biosynthesis

Read more

Summary

Introduction

After cellulose, is the second most abundant biopolymer accounting for approximately 1535% of the dry weight of wood. As an important component during wood formation, lignin is indispensable for plant structure and defense. MicroRNAs are an abundant class of 19-24 nucleotides which are small endogenous non-coding RNA that negatively regulate gene expression at the post-transcriptional level by directing the cleavage of mRNAs or interfering with translation [1,2,3,4,5]. MiRNAs are single stranded RNA molecules encoded by nuclear genes which are processed into primary miRNA (pri-miRNA) transcripts by the action of RNA polymerase II [7] These pri-miRNA are cropped into stem loop structures called precursor miRNAs (pre-miRNAs) with sequence of 70-150nt long through the action of RNase III [6,7]. SiRNAs are processed from long double stranded RNA (dsRNA) introduced exogenously into cells, formed by convergent transcription, extended hairpin structures or RNA-dependent RNA polymerization [7,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call