Abstract

Isoniazid (INH), Rifampicin (RIF) and Pyrazinamide (PZA) are part of first-line anti-tuberculosis therapy used against infection caused by Mycobacterium tuberculosis. However, these drugs are known to be potentially harmful as these are associated with numerous side effects and when taken together their harmful outcomes are elevated in a synergistic manner. Identification of possible mechanism underlying RIF + INH + PZA induced nephrotoxicity may be advantageous in developing strategies to prevent their toxic implications. In this study rats were distributed in two groups of six each: Control (tap water) and Toxicant (INH + RIF + PZA) in dosage derived through extrapolation from human dosage for 28 days once in a day. Antioxidant activity and histology of kidney were examined. In addition, apoptosis was also studied using pro and anti-apoptotic markers and TUNEL staining to check nephrotoxicity. Findings indicated that combined (INH, RIF and PZA) 28 day exposure in Wistar rats caused increase in number of free radicals/ reactive oxygen species which further cause changes in levels of enzymatic antioxidants such as glutathione, Superoxide dismutase, Catalase, and Glutathione-s-transferase. Altered content of pro (BAD&BAX) and anti-apoptotic genes (BCL-2&BCL2L1) genes, TUNEL positive cells and DNA fragmentation emphasized involvement of apoptosis. This study concluded that nephrotoxicity is accompanied during combinational anti-tuberculosis drug therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call