Abstract

Curcumin, a well-known chemopreventive agent from turmeric, inhibits the expression of several oncogenes and cell proliferation genes in tumor cells. This study aims to understand the precise molecular mechanism by which curcumin exerts its effects on retinoblastoma cells, by performing whole genome microarray analysis to determine the gene expression profiles altered by curcumin treatment. Curcumin suppressed cell viability and altered the cell cycle of retinoblastoma cells. We identified 903 downregulated genes and 1,319 upregulated genes when compared with the control cells after treatment with 20 μM curcumin concentration for 48 h. These genes were grouped into respective functional categories according to their biological function. We found that curcumin regulated the expression of genes that are involved in the regulation of apoptosis, tumor suppressor, cell-cycle arrest, transcription factor, and angiogenesis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to validate the results of genome array, and the results were consistent with the obtained data. In conclusion, treatment of curcumin affects the expression of genes involved in various cellular functions and plays an important role in tumor metastasis and apoptosis. Thus, curcumin might be an effective chemopreventive agent for retinoblastoma cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.