Abstract

BackgroundHepatic steatosis renders hepatocytes vulnerable to injury, resulting in the progression of preexisting liver disease. Previous animal and cell culture studies implicated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription-3 (STAT3), extracellular signal-regulated kinase (ERK) and estrogen-receptor α in the pathogenesis of hepatic steatosis and disease progression. However, to date there have been few studies performed using human liver tissue to study hepatic steatosis. We examined the expression patterns of mTOR, STAT3, ERK and estrogen-receptor α in liver tissues from patients diagnosed with hepatic steatosis.MethodsWe reviewed the clinical and histomorphological features of 29 patients diagnosed with hepatic steatosis: 18 with non-alcoholic fatty liver disease (NAFLD), 11 with alcoholic fatty acid disease (AFLD), and a control group (16 biliary cysts and 22 hepatolithiasis). Immunohistochemistry was performed on liver tissue using an automated immunostainer. The histologic severity of hepatic steatosis was evaluated by assessing four key histomorphologic parameters common to NAFLD and AFLD: steatosis, lobular inflammation, ballooning degeneration and fibrosis.ResultsmTOR, phosphorylated STAT3, phosphorylated pERK, estrogen-receptor α were found to be more frequently expressed in the hepatic steatosis group than in the control group. Specifically, mTOR was expressed in 78% of hepatocytes, and ERK in 100% of hepatic stellate cells, respectively, in patients with NAFLD. Interestingly, estrogen-receptor α was diffusely expressed in hepatocytes in all NALFD cases. Phosphorylated (active) STAT3 was expressed in 73% of hepatocytes and 45% of hepatic stellate cells in patients with AFLD, and phosphorylated (active) ERK was expressed in hepatic stellate cells in all AFLD cases. Estrogen-receptor α was expressed in all AFLD cases (focally in 64% of AFLD cases, and diffusely in 36%). Phosphorylated STAT3 expression in hepatocytes and hepatic stellate cells correlated with severe lobular inflammation, severe ballooning degeneration and advanced fibrosis, whereas diffusely expressed estrogen-receptor α correlated with a mild stage of fibrosis.ConclusionsOur data indicate ERK activation and estrogen-receptor α may be relevant in the development of hepatic steatosis. However, diffuse expression of estrogen-receptor α would appear to impede disease progression, including hepatic fibrosis. Finally, phosphorylated STAT3 may also contribute to disease progression.

Highlights

  • Hepatic steatosis renders hepatocytes vulnerable to injury, resulting in the progression of preexisting liver disease

  • The mammalian target of rapamycin controls lipid biosynthesis via various effector molecules, such as sterol regulatory element-binding protein like-1c (SREBP-1c) [3] which engages in the development of hepatic steatosis [4]. mTOR, signal transducer and activator of transcription-3 (STAT3), and extracellular signal-regulated kinase (ERK) all belong to downstream mediators of leptin signaling [5,6,7], and it has been shown that leptin plays a crucial role in hepatic lipid regulation [8]

  • non-alcoholic fatty liver disease (NAFLD) cases were characterized by low or no phosphorylated STAT3 (pSTAT3) expression, and low or predominant phosphorylated ERK (pERK) expression

Read more

Summary

Introduction

Hepatic steatosis renders hepatocytes vulnerable to injury, resulting in the progression of preexisting liver disease. Previous animal and cell culture studies implicated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription-3 (STAT3), extracellular signal-regulated kinase (ERK) and estrogen-receptor α in the pathogenesis of hepatic steatosis and disease progression. We examined the expression patterns of mTOR, STAT3, ERK and estrogen-receptor α in liver tissues from patients diagnosed with hepatic steatosis. MTOR, signal transducer and activator of transcription-3 (STAT3), and extracellular signal-regulated kinase (ERK) all belong to downstream mediators of leptin signaling [5,6,7], and it has been shown that leptin plays a crucial role in hepatic lipid regulation [8]. The kinases, including extracellular signal-regulated kinase (ERK), are activated early in liver injury, and led to hepatic fibrosis of rats [10]. Animal and cell culture studies suggest estrogen prevents hepatic fibrosis by blocking lipid peroxidation and production of reactive oxygen species [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call