Abstract
In cattle, administration of retinol at the time of superovulation has been indirectly associated with enhanced developmental potential of the embryo. Vitamin A and its metabolites influence several developmental processes by interacting with 2 different types of nuclear receptors, retinoic acid receptors and retinoid X receptors (RXRs). Given the limited information available concerning the RXR-mediated retinoid signaling system, particularly in species other than rodents, this study was performed to gain insight into the potential role of retinoid signaling during preattachment embryo development in the cow. Bovine embryos were produced in vitro from oocytes harvested from abattoir ovaries and frozen in liquid nitrogen at the oocyte, 2-, 4-, 8-, and 16- to 20-cell, morula, blastocyst, and hatched blastocyst stages. Reverse transcription polymerase chain reaction (PCR) and whole mount in situ hybridization were utilized to investigate mRNA expression for RXR alpha, RXR beta, RXR gamma, alcohol dehydrogenase I (ADH-I), retinaldehyde dehydrogenase 2 (RALDH2), peroxisome proliferator activated receptor gamma (PPAR gamma), and glyceraldehyde-3-phosphate dehydrogenase. Transcripts for RXR alpha, RXR beta, RALDH2, and PPAR gamma were detected in all stages beginning from the oocyte through to the hatched blastocyst. Whole mount in situ hybridization performed using digoxigenin-labeled antisense probes detected all 4 transcripts in both the inner cell mass and the trophectoderm of hatched blastocysts. PCR products obtained for ADH-I exhibited very low homology to known human and mouse sequences. Immunohistochemistry was performed using polyclonal anti-rabbit antibodies against RXR beta and PPAR gamma to investigate whether these embryonic mRNAs were translated to the mature protein. Strong immunostaining was observed for both RXR beta and PPAR gamma in the trophectoderm and inner cell mass cells of intact and hatched blastocysts. Messenger RNA was not detected at any stage for RXR gamma. Expression of mRNA for RXR alpha, RXR beta, RALDH2, and PPAR gamma suggests that the early embryo may be competent to synthesize retinoic acid and regulate gene expression during preattachment development in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.