Abstract

Glyphosate, a functional analogue of phosphoenolpyruvate (PEP), blocks the shikimate pathway by inhibiting the enzyme5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) through interference with the conversion of (shikimate-3-phosphate) S3P and PEP to 5-enolpyruvylshikimate-3-phosphate (EPSP) and subsequently leads to plant death. This metabolic pathway possesses great potential to be used for development of herbicide resistant transgenic crops and here in this study, we wanted to check the expression potential of CP4-EPSPS gene in various sugarcane genotypes. A synthetic version of CP4-EPSPS gene synthesized commercially, cloned in pGreen0029 vector, was transformed into regenerable embryogenic calli of three different sugarcane cultivars HSF-240, S2003US-778 and S2003US-114 using biolistic gene transfer approach for comparative transcriptional studies. Transgenic lines screened by PCR analysis were subjected to Southern hybridization for checking transgene integration patterns. All the tested lines were found to contain multiple (3-6) insert copies. Putative transgenic plants produced the CP4-EPSPS protein which was detected using immunoblot analysis. The CP4-EPSPS transcript expression detected by qRT-PCR was found to vary from genotype to genotype and is being reported first time. In vitro glyphosate assay showed that transformed plants were conferring herbicide tolerance. It is concluded that different cultivars of sugarcane give variable expression of the same transgene and reasons for this phenomenon needs to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call