Abstract

The cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. A cDNA sequence encoding the CAD gene was isolated from the leaves of Ginkgo biloba L, designated as GbCAD1. The full-length cDNA of GbCAD1 was 1,494 bp containing a 1,074 bp open reading frame encoding a polypeptide of 357 amino acids with a calculated molecular mass of 38.7 kDa and an isoelectric point of 5.74. Comparative and bioinformatic analyses revealed that GbCAD1 showed extensive homology with CADs from other gymnosperm species. Southern blot analysis indicated that GbCAD1 belonged to a multi-gene family. Phylogenetic tree analysis revealed that GbCAD1 shared the same ancestor in evolution with other CADs and had a further relationship with other gymnosperm species. GbCAD1 was an enzyme being pH-dependent and temperature-sensitive, and showing a selected catalyzing. Tissue expression pattern analysis showed that GbCAD1 was constitutively expressed in stems and roots, especially in the parts of the pest and disease infection, with the lower expression being found in two- to four-year-old stem. Further analysis showed the change in lignin content had some linear correlation with the expression level of GbCAD1 mRNA in different tissues. The increased expression of GbCAD1 was detected when the seedling were treated with exogenous abscisic acid, salicylic acid, ethephon, ultraviolet and wounding. These results indicate that the GbCAD1 gene may play a role in the resistance mechanism to biotic and abiotic stresses as well as in tissue-specific developmental lignification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.