Abstract
Wolfram syndrome is an autosomal recessive disorder of the neuroendocrine system, known as DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness) syndrome, and considered an endoplasmic reticulum disease. Patients show mutations in WFS1, which encodes the 890 amino acid protein wolframin. Although Wfs1 knockout mice develop diabetes, their hearing level is completely normal. In this study, we examined the expression of wolframin in the cochlea of a nonhuman primate common marmoset (Callithrix jacchus) to elucidate the discrepancy in the phenotype between species and the pathophysiology of Wolfram syndrome-associated deafness. The marmoset cochlea showed wolframin immunoreactivity not only in the spiral ligament type I fibrocytes, spiral ganglion neurons, outer hair cells, and supporting cells, but in the stria vascularis basal cells, where wolframin expression was not observed in the previous mouse study. Considering the absence of the deafness phenotype in Wfs1 knockout mice, the expression of wolframin in the basal cells of primates may play an essential role in the maintenance of hearing. Elucidating the function of wolframin protein in the basal cells of primates would be essential for understanding the pathogenesis of hearing loss in patients with Wolfram syndrome, which may lead to the discovery of new therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.