Abstract

Plant tau glutathione S-transferase (GSTU) is a kind of multiple functions enzyme, but its specific roles in poplar disease resistance remain uncertain. In this study, 27 PdbGSTU-encoding genes from Populus davidiana × P. bollena were cloned and their protein architectures and phylogenetic relationships were subsequently analyzed. Expression analysis revealed that PdbGSTUs were differentially expressed under Alternaria alternate infection. Then, the PdbGSTU10 was further induced by phytohormones and H2O2, especially salicylic acid (SA), indicating its potential role in the pathogen defense of poplar. Subsequently, gain- and loss-of-function assays showed that overexpressed PdbGSTU10 activated antioxidant enzymes and significantly decreased reactive oxygen species (ROS) content, ultimately improving the resistance to A. alternate in poplar. Conversely, silencing PdbGSTU10 had the opposite effect. Moreover, overexpressed PdbGSTU10 also increased the content of SA and induced the expression of SA signal-related genes. These results showed that PdbGSTU10 may enhance disease resistance in poplar by scavenging ROS and affecting the SA signaling pathway. Our findings contribute to the understanding of the functions of GSTU in woody plants, particularly in disease resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call