Abstract

Phytic acid, myo-inositol-hexa kisphosphate (InsP 6), is a storage form of phosphorus in plants. Despite many physiological investigations of phytic acid accumulation and storage, little is known at the molecular level about its biosynthetic pathway in plants. Recent work has suggested two pathways. One is an inositol lipid-independent pathway that occurs through the sequential phosphorylation of 1 d- myo-inositol 3-phosphate (Ins(3)P). The second is a phospholipase C (PLC)-mediated pathway, in which inositol 1,4,5-tris-phosphate (Ins(1,4,5)P 3) is sequentially phosphorylated to InsP 6. We identified 12 genes from rice ( Oryza sativa L.) that code for the enzymes that may be involved in the metabolism of inositol phosphates. These enzymes include 1 d- myo-inositol 3-phosphate synthase (MIPS), inositol monophosphatase (IMP), inositol 1,4,5-tris-phosphate kinase/inositol polyphosphate kinase (IPK2), inositol 1,3,4,5,6-penta kisphosphate 2-kinase (IPK1), and inositol 1,3,4-tris kisphosphate 5/6-kinase (ITP5/6K). The quantification of absolute amounts of mRNA by real-time RT-PCR revealed the unique expression patterns of these genes. Outstanding up-regulation of the four genes, a MIPS, an IPK1, and two ITP5/6Ks in embryos, suggested that they play a significant role in phytic acid biosynthesis and that the lipid-independent pathway was mainly active in developing seeds. On the other hand, the up-regulation of a MIPS, an IMP, an IPK2, and an ITP5/6K in anthers suggested that a PLC-mediated pathway was active in addition to a lipid-independent pathway in the anthers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call