Abstract

Glutamate-gated chloride channels (GluCl) mediate fast inhibitory neurotransmission in invertebrate nervous systems. Although only one GluCl gene was presented in insects, it showed diverse alternative splicing that was speculated could affect channel function and pharmacology. In this study, we isolated GluCl cDNAs from adults of the small brown planthopper (SBPH) Laodelphax striatellus and showed that six L. striatellus GluCl variants (LsGluCl-AS, LsGluCl-BS, LsGluCl-CS, LsGluCl-AL, LsGluCl-BL, LsGluCl-CL) were present in the SBPH. The expression patterns of six variants differed among developmental stages (egg, first- to fifth-instar nymphs, male and female adults) and among the body parts (head, thorax, abdomen, leg) of the female adult SBPH. All the transcripts were abundant in the head of the adult. When expressed in African clawed frog, Xenopus laevis, oocytes, the two functional variants (LsGluCl-AS, LsGluCl-AL) had similar EC50 and IC50 values for L-glutamate and channel blockers picrotoxinin and fipronil. This study represents a comprehensive molecular, expression and pharmacological characterisation of GluCl in the SBPH. These findings should be useful in providing more opportunities to discover novel insect control chemicals. © 2016 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.