Abstract

The Asian rice gall midge, Orseolia oryzae, is a major dipteran pest of rice, with many known biotypes. The present investigation was initiated to understand the molecular mechanisms of infestation for developing novel integrated pest management strategies. We isolated and characterized a gene, nucleoside diphosphate kinase (OoNDPK), from the rice gall midge, encoding a protein with 169 amino acid residues and with a secretory signal sequence - an observation that assumes significance as salivary gland secretions have been implicated to play a major role in insect-plant interactions. Furthermore, up-regulation (> 18 folds) of OoNDPK was observed in the salivary glands of maggots feeding on susceptible host in contrast to those feeding on resistant host. Phylogenetic analysis revealed similarity of OoNDPK with its dipteran orthologues. 3DLigandSite analysis, of the predicted OoNDPK and its orthologues, revealed phenylalanine and tyrosine residues to be specifically present in NDPK proteins from the plant feeders. Results suggest secretion of OoNDPK into the host plant and its probable involvement in gall midge-rice interaction. Using the coleoptile cell elongation assay, we demonstrated that the recombinant OoNDPK is capable of causing elongation of rice coleoptile cells. Additionally, heterologous expression of OoNDPK in Escherichia coli increased the tolerance of these cells to salt (NaCl; up to 1 mM), hinting at the involvement of this gene in abiotic stress response as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.