Abstract

Behavioral and physiological evidence indicates that odor processing in the main olfactory bulb is influenced by olfactory experience. At the cellular level, changes in inhibitory influence exerted by granular interneurons may contribute to restructuring odor representations. To assess experience-dependent modulation in the responsiveness of granule cells, we measured the level and spatial distribution of odor-induced expression of the immediate-early gene Zif268 in the granule cell layer of adult mice submitted or not to olfactory discrimination conditioning. We first show that stimulation by the reinforced odorant in conditioned animals did not induce any increase in Zif268 expression in contrast to stimulation with an unfamiliar odorant which induced an odor-specific three-fold increase in Zif268 expression. The same lack of Zif268 induction was observed in animals exposed to odorants without learning, indicating that familiarity to the odorant with or without conditioning similarly reduced responsiveness of granule cells to odorant stimulation. Second, conditioning induced a spatial reorganization of Zif268-positive cells leading to higher contrast and significant enlargement of their distribution pattern. The latter effect was also present in animals exposed to the odorants without conditioning but was significantly weaker. Taken together, these data indicate that distinct populations of granule cells are solicited by odorant processing, depending on its familiarity or behavioral significance. Finally, we report that the expression pattern of Zif268 in the granule cell layer is constrained by anteroposterior and dorsolateral gradients in cell density, pointing to anatomical and possibly functional disparity within the layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call