Abstract

Recent studies demonstrated that skin surface electric conditions affect epidermal permeability barrier homeostasis. These results suggest the existence of voltage sensor on the keratinocytes of the epidermis. On the contrary, specific blockers of the voltage-gated calcium channel (VGCC) also affect epidermal barrier homeostasis, but the existence and function of the channel has not been determined. We demonstrated here immunohistochemically the expression of the main subunit of the L-type VGCC, alpha1C, which alone has a calcium channel function, in mouse and human epidermis. Immunostaining, RT-PCR, and Western blotting were carried out to detect the channel protein. Messenger RNA of alpha1C was also detected in mouse epidermis and human keratinocyte culture by RT-PCR. We also evaluated the function of the channel in the cultured human keratinocytes. Previously, we demonstrated that influx of calcium ion into epidermal keratinocytes delayed the barrier recovery after barrier disruption and topical application of calcium channel blocker accelerated the barrier recovery. In this study, topical application of nifedipine and R-(+)-BAY K8644 after tape stripping of hairless mice accelerated the barrier repair rate while application of S-(-)-BAY K8644 delayed the barrier recovery. These results suggest that the VGCC exists on epidermal keratinocytes and plays an important role in skin barrier homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.