Abstract

Introduction: Vitamin D deficiency is a substantial comorbidity in 50% of pediatric patients and is linked with poorer health outcomes in children. Vitamin D levels are also shown to be inversely related to BMI. Therefore, there are many more children with low vitamin D levels due to the increasing prevalence of pediatric obesity. Pediatric patients with obesity and vitamin D deficiency also have a uniquely increased risk of metabolic syndrome, as compared to their lean peers. Measured levels of vitamin D correlate with other physiological markers of vitamin D effects in lean individuals but not obese individuals. It is possible that vitamin D levels reflect a storage form of vitamin D rather than a true reflection of vitamin D action in the body in this particular population. The aim of this study was to provide foundational knowledge to understand if expression of vitamin D receptor (VDR)-target genes may be used as a reference standard for vitamin D status in the body. Methods: We performed a secondary analysis of samples obtained from 33 obese adolescents that were consented under a past IRB-approved protocol. They were between the ages of 13 to 18 years that underwent bariatric surgery between 2004 and 2019. Data comprised of age, gender, race/ethnicity, and BMI. Samples collected included blood and subcutaneous adipose tissue. The tissue was analyzed via Real Time-PCR to obtain quantitative levels of VDR-target gene expression, which included PPARg, TLR4, THBD, CYP24A1, and VDR. Gene expression levels were normalized to the average of two housekeeping genes, GAPDH and RPLPO. Blood samples provided vitamin D levels (serum 25(OH)D). Results: VDR-target gene expression was significantly correlated between THBD, VDR, and TLR4 (p <0.05), and PPARg with THBD and TLR4 (p <0.05). There was no correlation observed between CYP24A1 gene expression and the other genes that were evaluated (p >0.05). PPARg, THBD, TLR4, CYP24A1, and VDR gene expression levels did not correlate with circulating serum 25(OH)D levels (p >0.05). Conclusion: These preliminary findings suggest that VDR-target gene expression correlates with each other but not with circulating serum 25(OH)D levels. This discrepancy supports that 25(OH)D levels do not indicate levels of vitamin D action and may not be an appropriate indicator of vitamin D deficiency in the obese population. Also, the observed CYP24A1 gene expression was limited in subcutaneous adipose tissue yet expression was seen in multiple other VDR-target genes. This emphasizes the tissue-specific nature of gene regulation of vitamin D. Further work should investigate VDR-target gene expression levels across multiple tissues of obese individuals to determine if markers of vitamin D action in one tissue are reflective of action across the body. This study may provide the first step in determining a new and more accurate biomarker for vitamin D deficiency and treatment in obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call