Abstract

VGF is a secretory peptide precursor that is expressed and processed by neuronal cells in a cell type-specific fashion. In addition, VGF transcription and secretion are rapidly and relatively selectively induced by neurotrophins and depolarization in vitro. To gain insight into the possible function(s) of VGF in the nervous system, we have carried out a detailed examination of the distribution of VGF mRNA in the adult rat central nervous system by using in situ hybridization. Robust expression was detected in many neurons throughout the brain and spinal cord, in several types of neurons in the retina, and in presumptive chromaffin cells of the adrenal medulla. In the brain, prominent expression of VGF mRNA was observed in neurons of the main and accessory olfactory bulbs; in the anterior olfactory nucleus; in the induseum griseum and taenia tecta; in the olfactory tubercle; in CA1–CA3, the hilus of the dentate gyrus, and the subicular complex of the hippocampal formation; in the piriform, periamygdaloid, transitional, and lateral entorhinal cortices; in the endopiriform nucleus; in the hypothalamus, particularly the preoptic, periventricular, supraoptic, suprachiasmatic, and arcuate nuclei; and in a number of septal, thalamic, amygdaloid, and brainstem nuclei. Labeling was also seen in neurons of the neocortex and transitional cortical areas, particularly in layer V, and in basal ganglia and cerebellum. These data demonstrate that VGF mRNA is expressed much more extensively in the brain than has been described in previous RNA or immunohistochemical studies, and, furthermore, that VGF is widely expressed in the spinal cord and retina. J. Comp. Neurol. 394:91–105, 1998. © 1998 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call