Abstract

Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are proteins implicated in tumor-associated microvascular angiogenesis. Expressions of VEGF and bFGF in various stages of chemical-induced rat bladder carcinogenesis were immunohistochemically investigated. Thirty-two male 6-week-old Wistar rats were given drinking water containing 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) for 20 weeks. VEGF and bFGF were not detected in the normal bladder epithelium. In simple hyperplasia, intensive expression of VEGF was observed in a few epithelial cells, and the expression of epithelial VEGF became more pronounced in papillary or nodular (PN) hyperplasia and papilloma. In carcinoma, heterogeneous expression of VEGF was observed in focal tumor cells, intensely expressed in the invading tumor cells. Ultrastructurally, carcinoma cells showed VEGF immunoreactivity in the cytoplasmic matrix and some rough endoplasmic reticulum, and VEGF-positive and -negative carcinoma cells were also clearly defined. High levels of VEGF mRNA were observed in the carcinoma. However, bFGF was not detected in the epithelium throughout the carcinogenesis. Increased microvessel counts appeared at simple hyperplasia and became more pronounced in PN hyperplasia, papilloma, and carcinoma (F-test; P < 0.05). In the carcinoma, the microvessel counts of the VEGF-expressing tumor areas were significantly higher than that of the non-VEGF-expressing tumor areas (U-test; P < 0.05). The present study suggests that upregulation of epithelial VEGF may begin at a quite early stage in BBN-induced rat bladder carcinogenesis, but bFGF may not be involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call