Abstract
Stimulation-induced chromaffin cell cortical F-actin disassembly allows the movement of vesicles towards exocytotic sites. Scinderin (Sc), a Ca2+-dependent protein, controls actin dynamics. Sc six domains have three actin, two PIP2 and two Ca2+-binding sites. F-actin severing activity of Sc is Ca2+-dependent, whereas Sc-evoked actin nucleation is Ca2+-independent. Sc domain role in secretion was studied by co-transfection of human growth hormone (hGH) reporter gene and green fluorescent protein (GFP)-fusion Sc constructs. Cells over-expressing actin severing Sc1-6 or Sc1-2 (first and second actin binding sites) constructs, increased F-actin disassembly and hGH release upon depolarization. Over-expression of nucleating Sc5-6, Sc5 or ScABP3 (third actin site) constructs decreased F-actin disassembly and hGH release upon stimulation. Over-expression of ScL5-6 or ScL5 (lack of third actin site) produced no changes. During secretion, actin sites 1 and 2 are involved in F-actin severing, whereas site 3 is responsible for nucleation (polymerization). Sc functions as a molecular switch in the control of actin (disassembly left arrow over right arrow assembly) and release (facilitation left arrow over right arrow inhibition). The position of the switch (severing left arrow over right arrow nucleation) may be controlled by [Ca2+]i. Thus, increase in [Ca2+]i produced by stimulation-induced Ca2+ entry would increase Sc-evoked cortical F-actin disassembly. Decrease in [Ca2+]i by either organelle sequestration or cell extrusion would favor Sc-evoked actin nucleation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.