Abstract

BackgroundWe have previously shown that mitochondrial uncoupling protein-2 (UCP-2) is increased in a swine model of hibernating myocardium (HM). Although UCP-2 reduces oxidant stress, it can promote inefficiency of the electron transport chain. In this study, we tested whether UCP-2 remains increased in revascularized HM (RHM) after coronary artery bypass grafting (CABG). MethodsSeven swine underwent thoracotomy with placement of a constrictor on the left anterior descending artery (LAD). Twelve weeks later, a left internal mammary artery graft was placed on the distal LAD. Four weeks post-CABG, computed tomography angiography documented patent grafts and function. At the terminal study, blood flow to the LAD and remote territories were assessed during high dose dobutamine and mitochondria isolated from both regions for analysis. Comparisons were made to a group of swine with HM who underwent constrictor placement without bypass grafting (n = 4). ResultsDuring dobutamine infusion, RHM demonstrated lower blood flows (2.44 ± 0.23 versus 3.43 ± 0.30 mL/min/g; P < 0.05) and reduced wall thickening (33 ± 9% versus 52 ± 13%; P < 0.05) compared with remote regions. RHM had lower respiratory control indices (3.7 ± 0.3 versus 4.3 ± 0.4; P < 0.05) with persistently increased UCP-2 content. ConclusionsDespite patent grafts, RHM demonstrates a submaximal response to dobutamine infusion and increased mitochondrial UCP-2 expression. These data support the notion that recovery of the mitochondria in RHM is delayed early post-CABG and may contribute to impaired oxygen consumption and contractile reserve during catecholamine challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.