Abstract

BackgroundTripartite motif-containing protein 11 (TRIM11), encoded by the TRIM11 gene, has been studied in some human malignant tumors. MicroRNA-5193 (miRNA-5193) was predicted to target TRIM11, according to bioinformatics data from TargetScan. However, the roles of TRIM11 and miRNA-5193 in prostate cancer remain unknown. This study aimed to investigate the regulatory effects of miRNA-5193 on the expression of TRIM11 in prostate cancer tissues compared with adjacent normal prostate, and in human prostate cancer cell lines, PC3 and DU145 in vitro.Material/MethodsProstate tumor tissue and adjacent normal tissue from 137 patients with stage T1c (n=66), stage T2 (n=48), and stage T3 (n=23) prostate cancer were studied. Expression levels of the TRIM 11 protein and the TRIM11 gene in prostate cancer, normal prostate tissue, and human prostate cancer cell lines, PC3 and DU145, were measured by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Transfection with TRIM11 small interfering RNA (siRNA) resulted in gene knockdown. Transfection with a miR-5193 mimic resulted in overexpression of miR-5193. Proliferation and invasion assays were performed for PC3 and DU145 cells in vitro.ResultsTRIM11 expression was upregulated in prostate cancer specimens compared with normal prostate tissue and was significantly correlated with reduced outcome. In human prostate cancer cell lines, PC3 and DU145, TRIM11 overexpression promoted cell proliferation. Upregulation of miR-5193 downregulated the expression of TRIM11.ConclusionsTRIM11 was upregulated in prostate cancer tissue and was associated with reduced prognosis. TRIM11 expression increased cell proliferation in vitro and was downregulated by miR-5193.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.