Abstract

This study was conducted to detect the protein expression of TNF-α system members (TNF-α/TNFR1/TNFR2) in bovine ovarian follicles and to evaluate the effects of TNF-α or dexamethasone on the survival and growth of primordial follicles in vitro, as well as on gene expression in cultured ovarian tissue. It was hypothesized that TNF-α induces follicular atresia in ovarian tissues cultured in vitro, and that dexamethasone suppresses the production of endogenous TNF-α, which can improve follicle viability in vitro. Ovarian fragments were cultured for 6days in α-MEM+ supplemented with TNF-α (0, 1, 10, 100 or 200ng/ml) or dexamethasone (0, 1, 10, 100 or 200ng/ml). After culture, the expression of mRNAs for BCL-2, BAX, P53, TNF-α, and CASP3 and CASP6 were evaluated. Immunohistochemical results showed that the TNF-α system members, were detected in bovine preantral and antral follicles. After 6days, the TNF-α (10ng/ml) treatment reduced the percentage of normal preantral follicles and increased the number of TUNEL-positive cells in cultured tissue. Dexamethasone (10ng/ml) during 6days of culture did maintain the percentage of normal follicles and the ultrastructure of follicles, while the presence of TNF-α or dexamethasone did not influence primordial follicle activation. However, TNF-α or dexamethasone had no effect on the levels of mRNA for P53, BCL-2, BAX and CASP6, in cultured tissues, but the presence of dexamethasone reduced the levels of CASP3 compared to ovarian slices cultured in control medium (α-MEM+). In conclusion, proteins of the TNF-α system are expressed at different bovine follicle stages. The addition of TNF-α in culture reduces follicle survival and increases the number of apoptotic cells in ovarian tissue, while the presence of dexamethasone maintains follicle ultrastructure in cultured tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call