Abstract

An industrial strain of Bacillus subtilis (natto) was used to produce poly-gamma-DL-glutamate (gammaPGA), a polymer of DL-glutamate linked by a gamma-peptide bond. In spite of efforts to improve gammaPGA production by modifying the medium, little attention has been paid to the expression of the gammaPGA synthetase gene. In this study, we investigated the expression of the gammaPGA synthetic gene and the gammaPGA product under various conditions with the LacZ-fusion of the synthetic gene (pgsB-lacZ). The 5' upstream regulatory region of the pgsB gene was also investigated by constructing deletion mutations of lacZ-fusion. The pgsB-lacZ was clearly expressed in the early stationary phase and was abolished by degU gene disruption. The results showed that pgsB-lacZ expression was repressed in rich media, and that gammaPGA production was limited by the substrate supply rather than by the amount of synthetase. Adding D-glutamate to the medium reduced gammaPGA production and synthetic gene expression. The transcription start point was determined by primer extension, and it was found that up to -721 bp (translation start point = +1) of the 5' untranslated region (UTR) was required for optimal pgsB-lacZ fusion gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.