Abstract
Potassium tellurite is highly toxic to most forms of life and specific bacterial tellurite defense mechanisms are not fully understood to date. Recent evidence suggests that tellurite would exert its toxic effects, at least in part, through the generation of superoxide anion that occurs concomitantly with intracellular tellurite (Te(4+)) reduction to elemental tellurium (Te(o)). In this work the putative antioxidant role of YggE from Escherichia coli, a highly conserved protein in several bacterial species and whose function is still a matter of speculation, was studied. When exposed to tellurite, E. coli lacking yggE exhibited increased activity of superoxide dismutase and fumarase C, augmented levels of reactive oxygen species and high concentration of carbonyl groups in proteins. Upon genetic complementation with the homologous yggE gene these values were restored to those observed in the parental, isogenic, wild type strain, suggesting a direct participation of YggE in E. coli tolerance to tellurite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.