Abstract

Transcriptionally regulated expression of tobacco anionic peroxidase was investigated with regard to tissue specificity and developmental regulation. Two tobacco species, Nicotiana sylvestris and Nicotiana tabacum cv. Xanthi, were stably transformed with a gene chimera composed of 3 kb of the tobacco anionic peroxidase promoter, the Escherichia coli beta-glucuronidase (GUS) coding region and the nopaline synthase terminator. Gene expression was regulated spatially and developmentally in all organs, and generally increased with age and maturity of the plant, tissue or organ. In the aerial portions of the plant, GUS activity was strongly expressed in trichomes and epidermis at nearly all developmental stages. In later stages of development, activity was also detected in ground tissue and parenchyma cells associated with vascular tissues. Activity in roots was limited to cortical cells and vascular-associated parenchyma cells. In reproductive tissue, expression was observed in sepals and petals before anthesis, and in all floral organs after anthesis. Expression was never detected in vascular tissue and was poorly correlated with lignification except in the cells surrounding primary xylem and pericyclic fibers in N. sylvestris. These studies suggest that this peroxidase isoenzyme is only limitedly involved in lignification but may be important in plant defense, growth and development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call