Abstract

The anatomical location of testes in mammals ranges from a location close to that observed in the embryo to a lower position usually involving a pendant scrotum. In scrotal mammals, the abdominal position of the cryptorchid testis, which elevates its temperature, is detrimental to spermatogenesis and causes infertility. Spermatocytes are sensitive but late spermatids are relatively resistant to thermal stress suggesting that the latter might be protected in some way. In general, most organisms express Hsp70 proteins, which play a crucial role in the protection of cells against thermal stress. We have found previously that the Hsc70t protein, a member of the Hsp70 family of proteins, is constitutively expressed in the late spermatids of mice. Here, we have utilized immunohistochemistry with anti-mouse Hsc70t antiserum to examine the expression of the spermatid-specific Hsp70 antigen in the testes of several mammalian species with different degrees of testes migration. Our data indicate that the antigen is conserved in the mammals including marsupials. We also examined whether antigens of Hsp70-related proteins were expressed in non-mammalian vertebrates including not only homoiothermal but also poikilothermal animals. The spermatid-specific Hsp70 antigens were not detectable in the testes of the animals examined. From results of immunohistochemistry with BRM22 monoclonal antibody which reacts broadly with Hsp70 family proteins, however, we revealed constitutive expression of antigens of Hsp70-related proteins in spermatogenic cells of the vertebrates. These results suggest that the expression of spermatid-specific Hsp70 protein may be involved in the developmental pathway during spermiogenesis in mammals rather than in thermotolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.