Abstract
The 27 kDa heat shock protein (HSP 27) is expressed in keratinocytes of the upper epidermal layers, and recent evidence suggests that this protein is involved in the regulation of epidermal differentiation. The expression of HSP 27 was investigated in developing human skin by immunohistochemistry utilizing a specific monoclonal antibody. We used formalin-fixed, paraffin-embedded tissue of abdominal skin obtained from 34 human fetuses ranging between 13 and 30 weeks estimated gestational age (EGA). We found that HSP 27 is not expressed in keratinocytes until week 14 EGA. At this stage staining is observed in the periderm and the upper intermediate cells but not in hair germs. During further development, HSP 27 expression correlates with increasing epidermal differentiation, i.e. shedding of the periderm and beginning of keratinization. HSP 27 expression is confined to the upper cell layers and sparse basal cells. In hair follicles, HSP 27 can be detected in the innermost cell layer of the outer root sheath and in keratinocytes of the bulge identical to what is observed in adult skin. The hair papilla, matrix cells and sebaceous glands are negative for HSP 27 and remain so during further development. In eccrine sweat glands of the 24th week EGA, HSP 27 is confined to the superficial cell layer of the sweat ducts. In the present report we demonstrate differentiation-related expression of HSP 27 in developing human skin. Further in vitro studies will address the molecular function of HSP 27 in epidermal differentiation and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.