Abstract

In the central nervous system, hyperpolarization-activated, cyclic nucleotide-gated (HCN1–4) channels have been implicated in neuronal excitability and synaptic transmission. It has been reported that HCN channels are expressed in the spinal cord, but knowledge about their physiological roles, as well as their distribution profiles, appear to be limited. We generated a transgenic mouse in which the expression of HCN4 can be reversibly knocked down using a genetic tetracycline-dependent switch and conducted genetically validated immunohistochemistry for HCN4. We found that the somata of HCN4-immunoreactive (IR) cells were largely restricted to the ventral part of the inner lamina II and lamina III. Many of these cells were either parvalbumin- or protein kinase Cγ (PKCγ)-IR. By using two different mouse strains in which reporters are expressed only in inhibitory neurons, we determined that the vast majority of HCN4-IR cells were excitatory neurons. Mechanical and thermal noxious stimulation did not induce c-Fos expression in HCN4-IR cells. PKCγ-neurons in this area are known to play a pivotal role in the polysynaptic pathway between tactile afferents and nociceptive projection cells that contributes to tactile allodynia. Therefore, pharmacological and/or genetic manipulations of HCN4-expressing neurons may provide a novel therapeutic strategy for the pain relief of tactile allodynia.

Highlights

  • Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are expressed in both the peripheral nervous system (PNS) and central nervous system (CNS), and these ion channels generate the hyperpolarization-activated, nonselective cation current (Ih)

  • In this study, we described for the first time the distribution of HCN4-immunoreactivity in the mouse spinal cord by immunohistochemistry using a knockdown-verified specific antibody

  • We found that HCN4-immunoreactivity was concentrated in the spinal dorsal horn (SDH), especially near the border of laminae II and III

Read more

Summary

Introduction

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are expressed in both the peripheral nervous system (PNS) and central nervous system (CNS), and these ion channels generate the hyperpolarization-activated, nonselective cation current (Ih). In the PNS, HCN1 and HCN2 are the major isoforms expressed in the dorsal root ganglion (DRG). HCN4, a well-known pacemaker channel in the sinoatrial node, is expressed in a minor population of trigeminal ganglion and DRG neurons [2]. HCN2 channels expressed in small-diameter DRG neurons reportedly play a pivotal role in inflammatory nociception [3,4,5]. HCN4 is reportedly expressed in olfactory and thalamocortical neurons [8,9,10].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call