Abstract

Green vegetative tissues of the moss Physcomitrella patens possess a powerful ability to tolerate severe drought stress. Proteomics analysis have revealed that a large number of late embryogenesis abundant (LEA) proteins were key players in the drought tolerance of the photosynthetic tissues. PpLEA4-20, a member of the moss LEA protein family, was selected for further function study using an ectopic expression method in rice. Through molecular identification via PCR, southern blotting and TAIL-PCR, we demonstrated that the PpLEA4-20 gene was transformed and inserted into a non-encoded region in chromosome 4 of rice and expressed stably in transgenic rice. Unexpectedly, PpLEA4-20 protein emerged as two high-expressed spots on 2-D gels generated from transgenic rice, suggesting that PpLEA4-20 proteins are complete compatible and might be modified in rice. Both growth and physiological analysis showed that seedlings of transgenic PpLEA4-20 rice displayed altered phenotypes and tolerance to salt. In addition, electrolyte leakage was reduced in transgenic PpLEA4-20 compared to wild type under stress conditions. Anti-aggregation analysis found that the PpLEA4-20 protein expressed in rice remained soluble at high temperature and in addition to some native proteins from transgenic PpLEA4-20 rice. Based on Nano LC MS/MS analysis, we identified several proteins from transgenic PpLEA4-20 rice of increased heat-stability. Our results provide evidence for a role of PpLEA4-20 in salt tolerance and stabilization of client proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call