Abstract

Cisplatin is a widely used chemotherapeutic agent whose dose-limiting side effects include ototoxicity and nephrotoxicity. Recent evidence indicates that cisplatin induces the expression of a novel protein, kidney injury molecule-1, in the renal proximal tubular epithelium to aid in regeneration. In this study, we determined whether kidney injury molecule-1 is expressed in the cochlea and is induced by cisplatin. Using reverse transcriptase polymerase chain reaction techniques, we have now identified kidney injury molecule-1 in the rat cochlea and in three different mouse transformed hair cell lines. Administration of cisplatin to rats produced hearing loss and induced kidney injury molecule-1 mRNA in the rat cochlea. Pretreatment of rats with lipoic acid, a scavenger of reactive oxygen species, significantly reduced cisplatin-induced hearing loss and kidney injury molecule-1 expression. Cisplatin also increased the expression of cochlear NOX3 mRNA, a member of the superoxide generating NADPH oxidase family of proteins recently identified in the cochlea, inhibition of which decreased kidney injury molecule-1 expression. Polymerase chain reaction performed on different regions of the cochlea indicated the presence of kidney injury molecule-1 mRNA in the lateral wall, organ of Corti and spiral ganglion. This distribution was confirmed by immunocytochemistry. Taken together, these data identify kidney injury molecule-1 as a novel cochlear injury molecule, whose expression is regulated by reactive oxygen species generated via the NADPH oxidase pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call