Abstract

Common Mer- cell lines deficient in O6-methylguanine DNA methyltransferase (MTase) activity probably result from the down-regulation of, rather than mutations in, the MGMT gene. However, the down-regulation of other unrelated genes was also observed in some of these cell lines, making it difficult to determine the precise functions of the MGMT MTase gene. To study the biological function of human MGMT MTase, we seek to utilize a newly created yeast mgt1 mutant deficient in the DNA repair MTase activity. The human MGMT cDNA was cloned into yeast expression vectors so that the MGMT gene is under the control of either an inducible GAL1 promoter or a constitutive ADH1 promoter. Upon galactose induction, the PGAL1-MGMT transformant had about 40-fold MTase activity compared to the wild-type strain. MGMT overexpression protected the yeast mgt1 mutant against alkylation-induced killing and mutation. Limited expression of the MGMT gene in the mgt1 mutant still provides significant alkylation resistance, albeit at a reduced level. The yeast mgt1 mutants increase spontaneous mutation rate, whereas constitutive expression of the MGMT gene lowered the spontaneous mutation rate in the mgt1 mutant to the wild-type level. We suggest that MGMT MTase may play the same role in human cells as the MGT1 MTase in yeast cells. Thus our results demonstrate that the human MGMT gene functionally complements the yeast MTase-deficient mutant in the protection against exogenous and endogenous DNA alkylation damage, which provides a useful tool for the study of in vivo mammalian MTase functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call