Abstract

The group A Streptococcus (GAS; Streptococcus pyogenes) causes an elaborate array of human diseases. In part, such variability in disease potential is a consequence of GAS manipulating the expression of a catalogue of virulence factors, with regulation occurring at both the transcriptional and posttranscriptional levels. The GAS small regulatory RNA (sRNA) FasX contributes to this regulatory activity, enhancing expression of the thrombolytic agent streptokinase, and reducing expression of collagen (pili) and fibronectin (PrtF1 and PrtF2) -binding adhesins. Here, we expand insight into the regulatory targets of FasX by identifying the M-related protein (Mrp), a fibrinogen-binding adhesin with anti-phagocytic activity, as a negatively-regulated target of FasX. Importantly, investigation of the consequences of FasX-mediated regulation led to the discovery that FasX is a major positive regulator of GAS survival and proliferation in non-immune whole human blood, with a 30-fold difference in GAS cell numbers between a fasX mutant strain and isogenic parental and complemented mutant strains. No difference in cell numbers were observed when these strains were grown in human serum, consistent with the protective phenotype associated with FasX occurring due to the inhibition of cell (e.g., neutrophil) - mediated GAS killing. The FasX-regulated factor/s responsible for the blood survival phenotype remain to be defined. In summary, we expand the known FasX regulon and identify a new phenotype associated with the regulatory activity of this key GAS sRNA. IMPORTANCE Small regulatory RNAs (sRNAs) represent a major class of regulatory molecule that promotes the ability of the group A Streptococcus (GAS) and other pathogens to regulate virulence factor expression. Despite FasX being the best-described sRNA in GAS, there remains much to be learned. Here, we highlight the importance of FasX, identifying for the first time that the loss of this sRNA results in a major reduction in the ability of GAS to survive in human blood, a phenotype critical to the ability of this human-specific pathogen to cause severe invasive infections. We also identified a novel regulatory target of FasX, thereby expanding the known regulon of this key sRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call