Abstract

The intracellular parasite Toxoplasma gondii converts from a rapidly replicating tachyzoite form during acute infection to a quiescent encysted bradyzoite stage that persists inside long-lived cells during chronic infection. Bradyzoites adopt reduced metabolism and slow replication while waiting for an opportunity to recrudesce the infection within the host. Interconversion between these two developmental stages is characterized by expression of glycolytic isoenzymes that play key roles in parasite metabolism. The parasite genome encodes two isoforms of lactate dehydrogenase (LDH1 and LDH2) and enolase (ENO1 and ENO2) that are expressed in a stage-specific manner. Expression of different isoforms of these enzymes allows T. gondii to rapidly adapt to diverse metabolic requirements necessary for either a rapid replication of the tachyzoite stage or a quiescent lifestyle typical of the bradyzoites. Herein we identified unspliced forms of LDH and ENO transcripts produced during transition between these two parasite stages suggestive of an intron retention mechanism to promptly exchange glycolytic isoforms for rapid adaptation to environmental changes. We also identified key regulatory elements in the ENO transcription units, revealing cooperation between the ENO2 5'-untranslated region and the ENO2 intron, along with identifying a role for the ENO1 3'-untranslated region in stage-specific expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.