Abstract

In Philadelphia-positive chronic myeloid leukemia (CML), imatinib resistance frequently emerges because of point mutations in the ABL1 kinase domain, but may also be the consequence of uncontrolled upstream signaling. Recently, the heteromeric transcription factor GA-binding protein (GABP) was found to promote CML-like myeloproliferative disease in mice. In a cohort of 70 CML patients, we found that expression of the GABP α subunit (GABPα) is positively correlated to the BCR-ABL1/ABL1 ratio. Moreover, significantly higher GABPα expression was detected in blast crisis than in chronic phase CML after performing data mining on 91 CML patients. In functional studies, imatinib sensitivity is enhanced after GABPα knockdown in tyrosine kinase inhibitors (TKI)-sensitive K-562, as well as by overexpression of a deletion mutant in TKI-resistant NALM-1 cells. Moreover, in K-562 cells, GABP-dependent expression variations of PRKD2 and RAC2, relevant signaling mediators in CML, were observed. Notably, protein kinase D2 (Prkd2) was reported to be a GABP target gene in mice. In line with this, we detected a positive correlation between GABPA and PRKD2 expression in primary human CML, indicating that the effects of GABP are mediated by PRKD2. These findings illustrate an important role for GABP in disease development and imatinib sensitivity in human CML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.