Abstract
A gene encoding the B subunit of the enterotoxigenic Escherichia coli heat-labile enterotoxin (LTB) was adapted to the optimized plant coding sequence, and fused to the endoplasmic reticulum retention signal SEKDEL in order to enhance its expression level and protein assembly in plants. The synthetic LTB (sLTB) gene was placed into a plant expression vector under the control of the CaMV 35S promoter, and subsequently introduced into the watercress (Nasturtium officinale L.) plant by the Agrobacterium-mediated transformation method. The integration of the sLTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The assembly of plant-produced LTB protein was detected by western blot analysis. The highest amount of LTB protein produced in transgenic watercress leaf tissue was approximately 1.3% of the total soluble plant protein. GM1-ganglioside enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is the receptor for biologically active LTB on the cell surface, suggesting that the plant-synthesized LTB subunits formed biologically active pentamers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.