Abstract

The polarized rat hepatoma/human fibroblast hybrid cell line, WIF-B, forms apical vacuoles into which cholephilic substances are secreted. We studied expression, localization, and function of the apical conjugate export pump, Mrp2, in WIF-B cells. Mrp2, the apical isoform of the multidrug resistance protein, alternatively termed canalicular Mrp (cMrp) or canalicular multispecific organic anion transporter (cMoat), is a 190-kd membrane glycoprotein mediating adenosine triphosphate (ATP)-dependent transport of glucuronides, glutathione S-conjugates, and other amphiphilic anions across the hepatocyte canalicular membrane into bile. Expression of the rat mrp2 gene in WIF-B cells was shown by reverse-transcription polymerase chain reaction (PCR), followed by sequencing of the amplified 789-bp fragment. Immunoblotting, using antibodies reacting with the amino-terminal or with the carboxyl-terminal sequence of rat Mrp2, detected the 190-kd glycoprotein in WIF-B cell homogenates. Immunofluorescence microscopy localized Mrp2 to the apical membrane domain. Preloading of WIF-B cells with a membrane-permeable ester of the calcium-dependent fluorescent indicator, Fluo-3, was followed by Mrp2-mediated secretion of the amphiphilic anion, Fluo-3, into the apical vacuoles. This transport was potently inhibited by cyclosporin A added to the culture medium. Direct measurements of ATP-dependent transport into Mrp2-containing plasma membrane vesicles in comparison with Mrp2-deficient vesicles established that Fluo-3 is transported by Mrp2 with a Km value of 3.7 micromol/L. Our results indicate that the polarized WIF-B cells express the rat ortholog of the apical conjugate-transporting ATPase, Mrp2. The function of Mrp2 as well as the action of inhibitors can thus be analyzed by use of the fluorescent amphiphilic anion, Fluo-3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.