Abstract

Lysozyme is an abundant, cationic antimicrobial protein that plays an important role in host defense. It targets the beta (1-4) glycosidic bond between N-acetylglucosamine and N-acetylmuramic residues that make up peptidoglycan, making lysozyme highly active against Gram-positive bacteria. However, lysozyme alone is inactive against Gram-negative bacteria because it cannot reach the peptidoglycan layer. Cecropins are cationic molecules with a wide range of antimicrobial activities. The main target for these peptides is the cytoplasmic membrane. We resume that cecopin may disrupt the outer membrane, giving the enzyme access to the peptidoglycan in cell wall. So in the present study, novel hybrid protein combining Musca domestica cecropin (Mdc) with human lysozyme (Hly) was designed. The DNA sequence encoding recombination fusion protein Mdc-hly was cloned into the pET-32a vector for protein expression in Escherichia coli strain BL21 (DE3). The protein was expressed as a His-tagged fusion protein, and the Mdc-hly was released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. Antimicrobial activity assays showed that the recombinant fusion protein Mdc-hly has improved in vitro antimicrobial activity and action spectrum compared to Mdc and hly. Mdc-hly may have important potential application as a future safely administered human drug and food additive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.