Abstract

Normal lung function requires transepithelial clearance of luminal proteins; however, little is known about the molecular mechanisms of protein transport. Protein degradation followed by transport of peptides and amino acids may play an important role in this process. We previously cloned and functionally characterized the neutral and cationic amino acid transporter ATB(0+) and showed expression in the lung by mRNA analysis. In this study, the tissue distribution, subcellular localization, and function of the transporter in native tissue were investigated. Western blots showed expression of the ATB(0+) protein in mouse lung, stomach, colon, testis, blastocysts, and human lung. Immunohistochemistry revealed that ATB(0+) is predominantly expressed on the apical membrane of ciliated epithelial cells throughout mouse airways from trachea to bronchioles and in alveolar type I cells. Electrical measurements from mouse trachea preparations showed Na(+)- and Cl(-)-dependent, amino acid-induced short-circuit current consistent with the properties of ATB(0+). We hypothesize that, by removing amino acids from the airway lumen, the transporter contributes to protein clearance and, by maintaining a low nutrient environment, plays a role in lung defense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.