Abstract
Autocrine transforming growth factor alpha (TGFalpha) activity and control mechanisms for its expression were examined in a representative clonal isolate (CBS4) of a well-differentiated human colon carcinoma cell line designated CBS. CBS4 cells expressed TGFalpha and its receptor, epidermal growth factor receptor (EGFr). Blockade of EGFr and TGFalpha by neutralizing antibodies inhibited clonal growth and the initiation of DNA synthesis from quiescence in CBS4 cells. Therefore, TGFalpha is an autocrine growth factor for CBS4 cells. Several studies have indicated that activation of the EGFr by exogenous EGF stimulates TGFalpha expression. However, in CBS4 cells EGF did not induce TGFalpha mRNA expression, indicating that EGF does not affect TGFalpha transcription in these cells. Exogenous treatment of exponentially growing cells with either EGF or EGFr blocking antibody enhanced release of TGFalpha protein into the conditioned medium. This indicated that the release of TGFalpha into the conditioned medium by exogenous EGF was at least partially due to the displacement of TGFalpha from the TGFalpha/EGFr complexes. Similarly to exponentially growing cells, the EGFr blocking antibody and EGF also enhanced TGFalpha release into the medium of CBS4 cells after release from quiescence. These results indicated that exogenous EGF had little if any effect on TGFalpha expression in these cells and suggested that TGFalpha expression might be under endogenous TGFalpha control. Blockade of the autocrine TGFalpha loop by TGFalpha neutralizing antibody suppressed TGFalpha mRNA both in exponentially growing and quiescent cells, demonstrating that autocrine TGFalpha is autoregulatory in this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.