Abstract
The halophytic Kandelia candel and Bruguiera gymnorrhiza are ideal model for studying the molecular mechanisms of salinity tolerance in mangrove plants. The correlation between mRNA expression of four oxidosqualene cyclase (OSC) genes namely, KcMS multifunctional terpenoid synthase and KcCAS cyloartenol synthase (K. candel), BgbAS beta-amyrin synthase and BgLUS lupeol synthase (B. gymnorrhiza) and salt concentration was examined. mRNA level of KcMS was increased with salt concentration in both roots and leaves of K. candel. Similarly, salt stress increased the mRNA levels of BgLUS and BgbAS in the root of B. gymnorrhiza. This result suggests that the function of terpenoids in root is associated with the salt stress. In contrast to these observations, the mRNA level of KcCAS was not modulated by salt stress in the roots, and decreased in the leaves. These results therefore suggest that the terpenoids but not phytosterols play an important role to cope with the salt stress in mangrove root. The content and proportion of beta-amyrin and lupeol increased with salinity in the root of K. candel and B. gymnorrhiza, providing additional evidence for the protective role of terpenoids. However, beta-amyrin and lupeol in B. gymnorrhiza leaves decreased with salt concentration, suggesting that the physiological significance for the terpenoids in the leaf may differ from that for the root.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.